If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+3y-40=0
a = 4; b = 3; c = -40;
Δ = b2-4ac
Δ = 32-4·4·(-40)
Δ = 649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{649}}{2*4}=\frac{-3-\sqrt{649}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{649}}{2*4}=\frac{-3+\sqrt{649}}{8} $
| u/4=3.4 | | -6/4x+30/4+1=7x | | 5(4+2b)=90 | | 7x=-6/4x+30/4+1 | | 2x+(18x+x)=15 | | u/3=4.1 | | u3=4.1 | | 23-n/16=-17 | | 6=-3/4n | | 2(3z-)+8=34 | | 5+2(x–2)=19 | | -5(2x+7)=65 | | 1/2b-2/3=1/6 | | |4m+3|=15 | | 7y−23=11y+5 | | 2x-12=-8x-72 | | 3c+8=4c+2 | | 4.0+6y=2400 | | 10-2x=4x-24 | | 8/m=72 | | x-(-16)=8 | | 2m+32=65 | | |x-3|-14=5 | | 2/37=1/3x+3 | | 1/2(x-66)=6+7x | | 9x−4=6x | | 9x−4= | | -1.n=-7 | | 5y+12=8y+20 | | 9x−4=6x+15 | | 3(2z-4)=5z+20 | | 10x+50=6x-6 |